= perte de sensibilité d'un récepteur due à un autre signal indésirable ou à l'environnement (parasites, bruit urbain, autres émetteurs radio...)

La valeur de cette perte de sensibilité est exprimée, de préférence, en dB

### Pour informations et comparaisons,

## voici ce que provoque la désensibilisation d'un relais :

| Désensibilisation. | Perte de sensibilité  | Puissance du signal à émettre (en W) vers le relais |
|--------------------|-----------------------|-----------------------------------------------------|
|                    | du relais (en μV).    | (depuis une télécommande, un mobile, un fixe).      |
| 5 dB               | 1,78 fois inférieure. | Il faut un signal 3,16 fois plus puissant.          |
| 10 dB              | 3,16 fois inférieure. | Il faut un signal 10 fois plus puissant.            |
| 20 dB              | 10 fois inférieure.   | Il faut un signal 100 fois plus puissant!           |

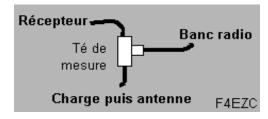
Voir aussi: <a href="https://qrvradio.fr/Math.htm#Des">https://qrvradio.fr/Math.htm#Des</a>

## Remarque complémentaire :

Lorsque le système antennaire est défectueux,

la mesure de désensibilisation est faussée et ne correspond donc pas à la réalité.

#### Il y a plusieurs méthodes de mesures possibles, par exemple :


- Mesure de la sensibilité du récepteur (dB SINAD) avec et sans signal perturbateur. La différence entre les 2 mesures donne la désensibilisation
- Mesure du seuil de déclenchement du Squelch avec et sans signal perturbateur.
  La différence entre les 2 mesures donne la désensibilisation.
- 1- La première mesure effectuée sur charge donne une référence.
- 2- La deuxième mesure est effectuée sur l'antenne réelle.

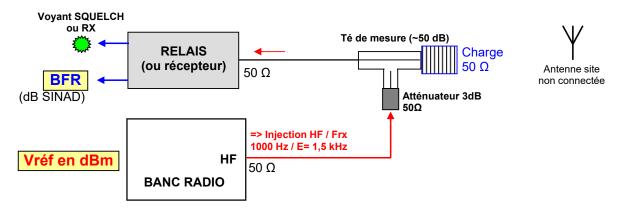
#### **REMARQUE IMPORTANTE:**

Si l'antenne reçoit un signal radio utile, la mesure correspondra alors à cette réception et non aux éventuels parasites ou brouillages...

Pour réaliser la mesure, il faut donc être certain qu'aucune émission ne vienne la perturber.

3- La différence entre ces 2 mesures donne alors la valeur de la désensibilisation (en µV ou en dB).




(Té de mesure 50Ω, ~50 dB d'atténuation)

Si le passage en émission du relais provoque une désensibilisation supplémentaire, nous sommes en présence d'une auto-désensibilisation.

# Principe de mesure de DESENSIBILISATION

Le banc radio fortement découplé permet d'injecter un signal parasite sans désadapter le système.

# 1°) MESURE DE REFERENCE SUR UNE ANTENNE PARFAITE NON PERTURBEE (Charge 50 Ω):

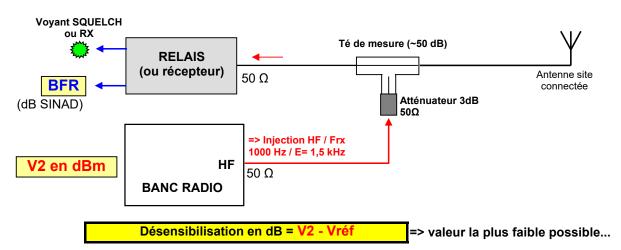


Augmenter le niveau HF du banc radio jusqu'à obtenir le déclenchement du Squelch (ou 20 dB SINAD sur la BFR). Lire la valeur de Référence en dBm Vréf.

# 2°) POUR UN RELAIS : MESURE DE L'AUTO-DESENSIBILISATION :

Conserver le montage précédent et la valeur de référence.

Passer le relais en émission et vérifier qu'il n'y a aucune influence sur le signal.


Le cas échéant, noter la nouvelle valeur V1 en dBm.

Auto-désensibilisation en dB = V1 - Vréf => suivant la valeur, indique un problème interne

### 3°) MESURES SUR ANTENNE:

Connecter l'antenne dans son environnement réel.

Augmenter le niveau HF du banc radio jusqu'à obtenir le déclenchement du Squelch (ou 20 dB SINAD sur la BFR). Lire la nouvelle valeur **V2** en dBm.



### 4°) POUR UN RELAIS: MESURE DE L'AUTO-DESENSIBILISATION DU SYSTEME:

Conserver le montage précédent et la valeur de référence.

Passer le relais en émission et vérifier qu'il n'y a aucune influence sur le signal.

Le cas échéant, noter la nouvelle valeur V3 en dBm.

Auto-désensibilisation en dB = V3 - Vréf => suivant la valeur, indique un problème du système (connecteurs, câbles, aériens...)